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UHF Resonator with Linear Tuning”

B. H. WADIAT axp R. L. SARDA?}

Summary—A novel method of tuning a transmission-line type
resonator is described. The first-order theory of such a resonator is
derived and presented in the form of design curves which indicate an
extremely good tuning linearity. Experiments with a resonator de-
signed on this principle agree with theory.

I. INTRODUCTION
&_ tunable resonant device, in which frequency

varies linearly with mechanical motion, promises

a large number of advantages in applications

such as wavemeters, ganged resonators, and mechanic-
ally swept oscillators where such a characteristic could
permit vernier {requency dials, one-point calibration,
and easier alignment and adjustment. Resonant circuits
which are in general use (LC circuits, resonant lines,
re-entrant cavities) depart greatly from linearity when
used over a large frequency range. Attempts are often
made to improve linearity by special measures and
auxiliary devices such as cams, link motions, specially
shaped tuning rods and plates; among the more so-
phisticated devices of this type, we may mention the
developments of Ginzton and Salisbury,* and Brot and
Soulard.? However, these methods are not linear “in
principle” but are made so by special design. A resonant
system which can indicate linearity or near linearity in
its basic conception is likely to be even more valuable,
This paper describes a simple method of tuning which
exhibits good linearity over a wide frequency range. In
essence, it involves two quarter-wave resonant trans-
mission line sections which are coupled together at their
open ends by a series capacitor. By a common mechan-
ical motion, the length of one section is increased while
that of the other is reduced by the same amount in such
a way that the combined length remains the same. This
causes one section of line to tune up its frequency curve
while the other tunes down and the nonlinearities of the
two sections effectively cancel each other. By a proper
choice of the characteristic impedances of the two sec-
tions, one can vary the tuning range, the rate of tuning,
and the region of approximate linearity. This principle
is quite neatly applied to two quarter-wave coaxial lines
placed “back-to-back” so as to form a doubly re-entrant
cavity as shown in Fig. 1(a); tuning is accomplished by
the movement of the capacitive gap relative to the
outer conductor. The theory and the design curves for
this type of tuning are derived and show that good line-

* Manuscript received by the PGMTT, June 12, 1959.

1 Central Electronics Engrg. Res. Inst., Pilani, Rajasthan, India.

L E. L. Ginzton and F. L, Salisbury, “Ultra-high-frequency wave-
meter,” U. S. Patent No. 2,503,256; April, 1950,

2 C. Brot and A. Soulard, “Cavity with linear tuning for meter
and decimeter wavelengths,” Compt. Rend. Acad. Sci. (Paris), vol.
243, pp. 1848-1850; December, 1956.
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Fig. 1—(a) Schematic diagram of the resonant system. (b) Idealized
ia.nd lossless equivalent circuit. (¢) Ideal equivalent circuit with
osses.

arity can be obtained over as large a tuning range as
1.5:1. Experimental evidence is given in support of the
theory. The study also includes a consideration of the
higher order modes and the Q of the structure.

In connection with previous work, we may mention
an article by Barrow and Mieher? which gives extensive
experimental data on re-entrant cavities. The article
deals with various modes which interplay in a re-entrant
cavity as it passes from a perfect cylinder to a perfect
coaxial line. In the process, the authors give brief data
on the resonant frequencies of the cavity with various
gap positions. It is interesting to note its similarity with
the data presented in our work. However, Barrow and
Mieher do not proceed to analyse the system nor to
consider it as a method of linear tuning as is done in the
present paper. The article came to the attention of the
authors after the principle of back-to-back tuning had
been established.

II. PrincIPLE OF BACK-TO-BAck TunNING

Consider two coaxial line sections each shorted at one
end with their open ends brought together. If the di-
ameters of their outer conductors are equal and if a
narrow capacitive gap is left at the junction between
their center conductors, a doubly re-entrant resonant
cavity results. Fig. 1{(a) shows such a structure and its
major dimensions. In general, the diameters (d; and d,)
of the two portions of the center conductor on either
side of the capacitive gap may be different; they are,

3 W. L. Barrow and W. W. Mieher, “Natural oscillations of elec-
’51'91281 cavity resonators,” Proc. IRE, vol. 28, pp. 184-191; April,
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however, mechanically joined together to keep the gap
distance constant. Tuning of the cavity consists in
making the outer shell capable of axial motion relative
to the center conductor assembly so that the capacitive
gap changes position and the lengths of the two coaxial
lines on either side of the capacitive gap are altered by
the same amount—one increases and the other decreases
in length. If /; and /; are the lengths of the two sections
and Zg and Zy are their characteristic impedances,
the ideal and lossless equivalent circuit of the resonator
will be as shown in Fig. 1(b). The impedances of the two
lines in question seen at the capacitive gap will be

. 27h
Zy = jZu tan -—;\—;

. 2wl
le =]Zoz tanT i

both are normally inductive.

A. The Resonance Equation

For resonance

A Z ¢ 27I'l1 + Z t 27rl2
—_— = an — an — -
arfC " "N

By appropriate re-arrangement

= <> -]
# ()= [CO0-2)]

where v9=velocity of light.

It is noted that the bracketed quantities are dimen-
sionless and constitute normalized variables. A simpler
form of the equation results as

W = tan fuli, + Z, tan f(1 — I,) (1)
where

. 2nfL

f» = normalized resonant frequency = v (2)

Vo

. h

li, = normalized length = 7’ 3)
. . CZnvo

C, = normalized impedance = 7 (4)
. . ZO2

Z. = normalized impedance = —— . (5)

[

In order to examine the tuning characteristics, the
above equation must be solved to yield f, as a function
of L, for representative values of the design parameters
Z, and C,. From the nature of the above equation it
would at first appear that the relation between f, and
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I, could hardly be linear and indeed in the rigorous sense
it is not so; attempts to convert (1) to a linear form by
some appropriate approximation did not yield neat
results. However, solution and plotting of (1) shows
that a significant portion of the curve differs only
slightly from the linear, and this is borne out by subse-
quent experimentation. It must be admitted that, in
spite of the nonlinear appearance of (1), faith in the
ultimate linearity of tuning was maintained by a cer-
tain amount of intuitive reasoning-based on the fact
that the two component lines of the resonator are oper-
ating back-to-back; while one is increasing in length,
the other 1s being reduced—thus giving a chance for the
nonlinearities on either side of the gap to neutralize each
other.

B. Solution of the Resonance Equation

By treating Z, and C, as parameters, (1) reduces to
an implicit transcendental relation between f, and I,
for each set of values of Z, and C, and can be solved by
well-known graphical methods. For each value of I,
from 0 to 1, the two sides of the equation are separately
plotted with f, as abscissa; the intersection of the two
curves gives the solution of f, for each /1,. Fig. 2 pertains

Fig. 2—Method of solution of the resonance equation.

to this process of graphical solution. It must be noted
that the terms on the right hand side of the equation
are periodic and that there will be a large number of pos-
sible solutions according to the branch on which the in-
tersection occurs. We shall discuss this point again
later, but for the moment we limit ourselves to the solu-
tion on the first branch of the curve, thus considering
only the case of “quarterwave” operation for each of the
two component lines. This is the lowest or dominant
mode and is of major practical importance.

The solutions obtained for this fundamental mode
are given in Fig. 3(a), (b), (c), and (d) in the form of a
series of universal design curves. These curves and the
normalized variables defined in (2), (3), (4) and (5) give
us the tools for designing these types of resonators in the
desired frequency range. The loci of the maxima are also
obtained by equating the derivative to zero and solving
the resulting equation,
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Fig. 3—Universal design curves for various values of Z, and C,.

An examination of these curves shows the following

properties:

1) Good linearity is obtained except near the maxi-
mum of the curve.

2) For values of Z, other than unity, better linearity
and more gradual tuning can be obtained over a
greater range on one side of the curve than on the
other.

3) The tunable range is reduced while linearity im-
proves as value of C, increases.

4) From symmetry considerations, it should be clear
that for Z, less than unity, the curves are lateral
inversions of the corresponding cases for their re-
ciprocals.

5) For i,=0 or 1 the cavity resembles a singly re-
entrant cavity of length L and characteristic im-
pedance Zg; or Zg; respectively.

C. Higher Order Modes

We have thus far restricted ourselves to the discus-
sion of the simplest mode in the cavity, i.e., the trans-
mission line mode with nearly quarterwave variation in
each coaxial section. It would be worthwhile to study
the possibility of other modes to see whether they be-
have linearly and to assure that there is no likelihood of

interference between the useful mode and the higher
orders. v

That higher order longitudinal modes are possible can
easily be seen from the periodic nature of the tangent
functions and {rom Fig. 2, where several intersections
are indicated. A physical picture can also be obtained
by noting that the resonance condition is determined by
the impedances looking into both lines at the plane of
the capacitive gap; the requisite impedances on either
side may be obtained by modes which are not necessarily
of the fundamental type. The number of possibilities
for satisfying the resonance condition is therefore in-
finite for each position of the capacitive gap.

For a proper understanding of such higher modes, a
solution for some typical values of parameters was ob-
tained for the mode which appears next after the dom-
inant, 7.e., as given by the second intersection (shown in
Fig. 2). Fig. 4 shows a comparison of the normal tuning
curve with the tuning curve for this next solution when
Zn=3 and C,=0.05. It is noted that the new curve is far
from regular; also that, fortunately, considerable fre-
quency separation occurs, and there is no harmonic
relation between the modes. We are therefore fairly safe
in assuming good mode-separation properties.

Higher order modes of the circumferential type are
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Fig. 4—Comparison of the next higher mode with the dominant
for Z,=3, and C,=0.05.
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also possible as in all cylindrically symmetric structures.
However, if care is taken to keep the circumference of
the cavity sufficiently less than one wavelength in the
operating range, the cavity can be essentially free from
circumferential mode interference.

Two simple checks can be made to assure that any
given design is operating in the required fundamental
mode:

D K\ for circumferential modes

2L <\ for longitudinal modes

at the highest operating frequency.

III. CarLcuraTION OF Q

If we take into account the small losses occurring in
the cylindrical conducting walls, the equation of input
impedance of the left side line can be rewritten as

le = Rzl —l_lel = Z()l tanh ylll
where

T1= a1 +jB,

ay=loss factor in nepers per meter (small),

B1=phase constant in radians per meter
provided we neglect the losses at the shorting end and
at the capacitive gap.

By standard algebraic methods, the real and the
imaginary parts of the above equation can be separated
to give
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Ry = Zaoul sec? Bihy

X1, = Zn tan Bily.

We assume that ai is quite small so that terms with
a;2l;? are neglected and tan auly = auli. This assumption is
justified for cavities with inner surfaces of high con-
ductivity materials.

The value of a; is given by the usual skin effect
formulat; for a silver plated cavity

/D
6.68 X 10-10/f <d— + 1>
1

o =
Dl D
0ge —
g )
But since
D 2nfL
Zy = 60log,— and f,=-—),
a4 70
hence
(G+1)
fa \di
o= 2774 X 10714 /22 - (6)
L ZolD

The resistive and reactive components of Z;, become

D
7 (1)
2.774 X 10_4/‘/'-5'—_11‘)‘/-1:—-— lin SeCanlm

R,

Xl1 = Z()l tan fnlln

and similar expressions hold for the right-side coaxial
line.

The equivalent circuit of Fig. 1(b) can be modified to
include the resistive components as shown in Fig. 1(c).
An expression for the unloaded Q is then simply given

by

_ Xy, + X,
" Ry+Ry
But we note that
X, + X1, = Zoutan fali -+ Zos tan fo(1 — li) = fg :

Hence

D
Zy 7 L

Qo =

D D :
2774 X 10674,3°C, [(? + 1) lin s€C? fuly + (7,1- + 1) (1 — ) sec? fu(1 ~ 11,,)]
1 2 .

* W. Jackson, “High Frequency Transmission Lines,” Methuen
and Co. Ltd., London, Eng., p. 50; 1951.
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IV. EXPERIMENTAL RESULTS
A. Cavity Design

In most cases, cavity design begins with a knowledge
of the desired tuning range around a given center fre-
quency. From the normalized curves in Fig. 3, one
curve with the appropriate linear tuning range and
slope is chosen; this determines the values of the para-
meters Z, and C,. The value of L is then determined by
applying (2) to the center frequency; knowing L, the
product ZaC in (4) is fixed from the chosen valtue of C,.
The value of Cis generally determined by the bounds of
the design problem such as the required gap distance or
the capacity of the tube electrodes in case of oscillator
cavities; hence Zn gets defined. The rest of the design
requires only the determination of the diameters di, ds,
and D for the appropriate characteristic impedances
keeping in mind that larger diameters give better Q,
while a possibility of circumferential modes limits the
average circumference to less than the lowest wave-
length.

A cold test model of a cavity with a range of 1100 to
1900 mc was designed to test the principles outlined
above. The curves of Z,=3 were chosen due to their
reasonable linearity consistent with good tuning range.
The mechanical structure of the cavity is shown in
Fig. 5. The two center conductors are supported with
the requisite spacing by being clamped to an outside
frame which forms the base of the whole structure. The
outer cylinder is mounted concentric to these conduct-
ors and it slides over the center conductor assembly. Ac-
curate linear motion is imparted to the outer cylinder
by means of a micrometer head having threads with
one millimeter pitch; there are two hundred circumfer-
ential divisions, and motion adjustability of nearly 10—
cm is thereby derived. An inherent backlash of about
0.005 cm exists; hence care is taken to make all adjust-
ments in one direction only. The important dimensions
of the cavity are L=4.967 cm, D=4.0 cm, d1=3.0 cm,
d»=1.75 cm, and ¢ is adjustable. The zero position on
the micrometer scale corresponds to the case when the
inner conductor d; is flush with the left wall of the cavity.

The feeding-in of the RF signal is in a completely
symmetric manner. A tiny probe protrudes through the
center of one of the inner conductors at the capacitive
gap and delivers the RF signal to the cavity from an or-
dinary flexible coaxial cable which is brought in along
the middle of the tube forming the center conductor d;.

B. Frequency Measurements

Measurements were first made on the cavity before
plating and installation of spring fingers in order to as-
sure that the cavity configuration was as close as pos-
sible to the theoretical design. As will be shown later,
these changes lead to a perturbation of the frequency.
For this experiment, the bearing surfaces were made to
the best possible sliding fit and properly aligned in all
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respects to ensure a good contact. A standard method?
was used for obtaining the curve of resonant frequency
vs cavity scale reading for two gap distances [0.42 cm
which corresponds to approximately luuf(C,=0.1), and
0.21 cm which gives twice as much capacity (C,=0.2)].

Fig. 6 shows the measurements {(curves B) as well as
the calculations (curves A) of tuning characteristics for
these two gap spacings; it is noted that the measured
curves exhibit an appreciably linear behavior, perhaps
slightly better than the theoretical curves. For com-
parison, a tuning curve (curve D shown dotted) is also
computed for the usual type of singly re-entrant cavity
(4.e. the capacitance terminated coaxial line) in the same
general range; the improvement in linearity by back-to-
back tuning becomes quite apparent. By fitting the best
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Fig, 5—The experimental resonator.
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Fig. 6—Comparison of measured and calculated readings for gap
distances of 0.42 cm (Cr,=0.1) and 0.21 cm (C,=0.2). A gives
calculated values; B gives measured values without spring fingers;
C gives measured values with spring fingers and silver plating.

5E. L. Ginzton, “Microwave Measurements,” McGraw-Hill
Book Co., New York, N. Y., pp. 413-417; 1957. ’



1960

straight line through our measured values, it can be
checked that departure from linearity is much less than
1 per cent for the whole range. For the larger capacit-
ance value, the linearity appears to be further improved,
although the tuning range is much reduced.

It is noticed that the measured curves have shifted
upwards and leftwards from the calculated curves for
both values of gap distance. An inquiry into the pos-
sible reasons for this difference between theory and ex-
periment yields a better insight into short-comings of
the first order theory.

1) A small systematic error is introduced due to the
finite thickness of the capacitive gap. In the ex-
periment, the micrometer scale is referenced from
the left wall of the cavity and, in any given posi-
tion, measures the distance from the wall to the
end plate of the larger central conductor. Where
the gap thickness is truly negligible this would not
cause an error, but for appreciable gap width (0.42
cm and 0.21 c¢m in our experiment) the distance Iy
should be measured to the center line of the gap as
the appropriate reference; hence all measured
readings would be shifted to the right by half the
gap width.

2) Consider the RF field configuration near the gap
as sketched in Fig. 7. Our design did not take into
account the effects of the “iringe” fields on the
capacity at the gap but merely assumed a lumped
capacitance of the ideal parallel-plate-type cal-
culated from the average area of the end surfaces
of the two center conductors. In practice, the “ef-
fective” capacitance under RF operation is differ-
ent and is determined by the field lines exchanged
between the two center conductors. Hence the
lines terminating on the outer cylinder indicate a
reduced effective capacitance. Resonance would
therefore be indicated at a slightly higher {re-
quency.

3) Due to the same fringing effect, the effective
lengths of the coaxial lines have changed. This is
shown by the distance marked A on Fig. 7 which
is the distance from the gap center to the surface
of revolution which separates the fields of the left-
hand coax from the fields of the righthand coax.
It 1s easily seen that the direction of the error is
such as to explain the differences between theory
and experiment.

A little thought will show that the errors due to 2)
and 3) will be larger for larger values of Z, and for
narrower gaps, since the differences in diameters of the
two central conductors, as will a narrower gap, will
cause the actual capacitance value to differ considerably
from that calculated on the average area basis.

In preparation for a proper measurement of Q,
spring-fingers were subsequently installed at the sliding
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contacts and the RF surfaces were plated with a coat of
about 20 microns of silver. Frequency measurements
were repeated in order to assess the change caused by
these additions; these measured curves are also shown
in Fig. 6 (marked C). It is clear that these changes have
caused a perturbation of nearly 100 mc in the frequency
due to the reduction in volume and the consequent
change in the resonant structure; however, linearity is
not at all impaired.

C. Measurement of Q

The first order formula for calculating the Qo of this
cavity was derived in Section III. When applied to the
present design, a curve of @y vs the tuning position can
be calculated; such a curve is shown in Fig. 8. It is of
interest to note the general trend of the curve which
indicates a similarity in general form to the slope of the
tuning curve. We see that Q, is reasonably high in the
region of interest to us (namely the linear tuning region
on the left hand side) and that it shows a slight rise with
frequency; the rapid fall in the region beyond the linear
range is of little consequence since the cavity is not in-
tended for use in that region.
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Fig. 7-—Probable configuration of electric field lines near the gap.
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Practical measurements of unloaded Q, for a gap dis-
tance of 0.42 cm were carried out using the impedance
method,® and are shown in Table I together with the
corresponding calculated values.

TABLE 1
COMPARISON OF CALCULATED AND MEASURED VALUES OF Qg
Measured fre- Tuning Corresponding
quency in mega- position Measured theoretical
cycles per second | in centimeters ° Qo
1500 0.85 1125 4700
1600 1.55 1280 4950
1800 1.8 1720 5100
1870 2.50 900 4400
1690 3.49 575 2100

As can be expected, the measured values of the un-
loaded Qg are about 25 per cent of the theoretical values.
This difference is a usual one in case of @y measurements
and is due to losses which are not accountable by the
simple theory. Losses at the shorting end, imperfect
spring contacts, unpolished surfaces, dirt, scratches,
capacitance losses at the gap, no losses etc., account for
this difference.

V. CONCLUSION

The first-order theory of back-to-back tuning has
been derived and shown to agree reasonably well with
the experimental results. Both theory and experiment
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show that the resonator tuning characteristic obtainable
by this method is linear for all practical purposes over a
large frequency range. By appropriate design, various
frequency ranges and tuning slopes can be obtained.
The theoretically expected values of unloaded Qs are in
the vicinity of 4500, while in actual practice values
around 1200 are obtained in the useful range of linear
tuning.

The method is, in general, applicable to any form of
resonant system where quarter-wave line sections can
be employed. For instance, for frequencies in the VHF
range, the method can be applied with Lecher lines; in
the UHF range, coaxial-type lines are more convenient.
The presence of a capacitive gap makes the system
especially adaptable where interaction with an electron
beam is intended. Due to the simple construction, con-
venient size, nonharmonic modes, and good mode sepa-
ration, this method should hold promise of valuable ap-
plication over a wide frequency spectrum.
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Equivalent Circuits for Small Symmetrical

Longitudinal Apertures and Obstacles*
ARTHUR A. OLINER{}

Summary—Formulas based on small aperture and small obstacle
theory are presented for the determination of equivalent circuits for
symmetrical longitudinal apertures and obstacles. These formulas
are then applied to several examples of practical interest, including
aperture discontinuities in trough waveguide and an obstacle array
of interest to anisotropic radomes.

I. INTRODUCTION

HE evaluation of equivalent circuits for wave-
T guide discontinuities often involves the solution of
" a boundary value problem of considerable com-
plexity. For the class of so-called “small” apertures and
obstacles, however, this evaluation becomes particu-

* Manuscript received by the PGMTT, August 28, 1959. The
major portion of this work was performed at the Microwave Research
Institute of the Polytechnic Institute of Brooklyn under Contract
No. AF-19(604)-2031, sponsored by the Air Force Cambridge Re-
search Center.

T Microwave Research Institute, Polytechnic Institute of Brook-
lyn, Brooklyn, N. Y.

larly simple when the problem is properly phrased. A
small aperture or obstacle is one which is located far
from the guide walls and whose dimensions are small
compared to a wavelength. Under these conditions, the
distortion of the field lines in the vicinity of such a small
aperture or obstacle, due to some specified excitation,
is essentially independent of the cross-sectional shape
of the containing waveguide, and depends only on the
nature of the excitation and the physical shape of the
aperture or obstacle. The quantity which characterizes
the aperture or obstacle and which is a function only of
its physical geometry and the type of incident excitation
is the polarizability; since the aperture or obstacle is
small compared to wavelength, the polarizability may
be determined under static conditions. The function of
small aperture or obstacle theory is then to relate the
polarizability to the location of the aperture or obstacle
within the containing waveguide and to the appropriate



