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UHF Resonator with Linear Tuning*
B. H. WADIAf AND

Summary—A novel method of tnning a transmission-line type

resonator is described. The first-order theory of such a resonator is

derived and presented in the form of design curves which indicate an

extremely good tuning linearity. Experiments with a resonator de-

signed on this principle agree with theory.

1. INTRODUCTION

A tunable resonant device, in which frequency

varies linearly with mechanical motion, promises

a large number of advantages in applications

such as wavemeters, ganged resonators, and mechanic-

ally swept oscillators where such a characteristic could

permit vernier frequency dials, one-point calibration,

and easier alignment and adjustment. Resonant circuits

which are in general use (LC circuits, resonant lines,

re-entrant cavities) depart greatly from linearity when

used over a large frequency range. Attempts are often

made to improve linearity by special measures and

auxiliary devices such as cams, link motions, specially

shaped tuning rods and plates; among the more so-

phisticated devices of this type, we may mention the

developments of Ginzton and Salisbury,l and Brot and

Soulard.z However, these methods are not linear “in

principle” but are made so by special design. A resonant

system which can indicate linearity or near linearity in

its basic conception is likely to be even more valuable.

This paper describes a simple method of tuning which

exhibits good linearity over a wide frequency range. In

essence, it involves two quarter-wave resonant trans-

mission line sections which are coupled together at their

open ends by a series capacitor, By a common nlechan-

ical motion, the length of one section is increased while

that of the other is reduced by the same amount in such

a way that the combined length remains the same. This

causes one section of line to tune up its frequency curve

while the other tunes down and the nonlinearities of the

two sections effectively cancel each other. By a proper

choice of the characteristic impedances of the two sec-

tions, one can vary the tuning range, the rate of tuning,

and the region of approximate linearity. This principle
is quite neatly applied to two quarter-wave coaxial lines

placed “back-to-back” so as to form a doubly re-entrant

cavity as shown in Fig. 1(a); tuning is accomplished by

the movement of the capacitive gap relative to the

outer conductor. The theory and the design curves for

this type of tuning are derived and show that good line-

* Manuscript received by the PGMTT, June 12, 1959.
t Central Electronics Engrg. Res. Inst., Pila~i, Rajasthan, India.
I E. L. Ginzton and F. L. Salisbury, “Ultra-high-frequency wave-

meter, ” U. S. Patent No. 2,503,256; April, 1950.
z C. Brot and A. Soulard, “Cavity with linear tuning for meter

and decimeter wavelengths, ” Compt. Rend. A cad. Sci. (Paris), vol.
243, pp. 1848-1850; December, 1956.
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Fig. l—(a) Schematic diagram of the resonant system. (b) Idealized
and IossIess equivalent circuit. (c) Ideal equivalent circuit with
losses.

arity can be obtained over as large a tuning range as

1.5:1. Experimental evidence is given in support of the

theory. The study also includes a consideration of the

higher order modes and the Q of the structure.

In connection with previous work, we may mention

an article by Barrow and Mieher3 which gives extensive

experimental data on re-entrant cavities. The article

deals with various modes which interplay in a re-entrant

cavity as it passes from a perfect cylinder to a perfect

coaxial line. In the process, the authors give brief data

on the resonant frequencies of the cavity with various

gap positions. It is interesting to note its similarity with

the data presented in our work. However, Barrow and

Mieher do not proceed to analyse the system nor to

consider it as a method of linear tuning as is done in the

present paper. The article came to the attention of the

authors after the principle of back-to-back tuning had

been established.

II. PRINCIPLE OF BACK-TO-BACK TUNING

Consider two coaxial line sections each shorted at one

end with their open ends brought together. If the di-

ameters of their outer conductors are equal and if a

narrow capacitive gap is left at the junction between

their center conductors, a doubly re-entrant resonant

cavity results. Fig. 1(a) shows such a structure and its

major dimensions. In general, the diameters (dl and c?Z)

of the two portions of the center conductor on either

side of the capacitive gap may be different; they are,

3 W. L. Barrow and W. W. Mieher, “Natural oscillations of elec-
~~fil cavity resonators, ” PROC. IRE, vol. 28, pp. 184–191; April,
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however, mechanically joined together to keep the gap

distance constant. Tuning of the cavity consists in

making the outer shell capable of axial motion relative

to the center conductor assembly so that the capacitive

gap changes position and the lengths of the two coaxial

lines on either side of the capacitive gap are altered by

the same amount—one increases and the other decreases

in length. If 11and 12are the lengths of the two sections

and Zol and Zoz are their characteristic impedances,

the ideal and lossless equivalent circuit of the resonator

will be as shown in Fig. 1(b). The impedances of the two

lines in question seen at the capacitive gap will be

27A
22, = jZOl tan ~,

27r12
Z 12= jZ~~ tan ~ ;

both are normally inductive,

A, The Resonance Equation

For resonance

1 2T12
— = Zol tan 2; + Z02 tan ~ “
27rjc

By appropriate re-arrangernent

(%3%‘tan[(:;)(;)]
+(-atan[(%ww

where V.= velocity of light.

It is noted that the bracketed quantities are dimen-

sionless and constitute normalized variables. A simpler

form of the equation results as

1
— = tan j.11. + Z. tan j.(1 – 1~.)
f.cn

(1)

where

fn = normalized resonant frequency = ~, (2)

ll. = normalized length = ~, (3)

Cz!lm
C. = normalized impedance = ——————

L’
(4)

Z02
Z. = normalized impedance = — .

20,
(5)

In order to examine the tuning characteristics, the

above equation must be solved to yield ffi as a function
of ll. for representative values of the design parameters

Z% and Cm. From the nature of the above equation it

would at first appear that the relation between j. and

11. could hardly be linear and indeed in the rigorous sense

it is not so; attempts to convert (1) to a linear for-m by

some appropriate approximation did not yield neat

results. However, solution and plotting of (1) shows

that a significant portion of the curve differs only

slightly from the linear, and this is borne out by subse-

quent experimentation. It must be admitted that, in

spite of the nonlinear appearance of (1), faith in the

ultimate linearity of tuning was maintained by a cer-

tain amount of intuitive reasoning based on the fact

that the two component lines of the resonator are oper-

ating back-to-back; while one is increasing in length,

the other IS being reduced—thus glvmg a chance for the

nonlinearities on either side of the gap to neutralize each

other.

B. Solution of the Resonance Equation

By treating Z. and C. as parameters, (1) reduces to

an implicit transcendental relation between f. and JIn

for each set of values of Z. and C%and can be solved by

well-known graphical methods. For eac!h value of 11~

from O to 1, the two sides of the equation are separately

plotted with f. as abscissa; the intersection of the two

curves gives the solution of j. for each 11.. Fig. 2 pertains

\
\ I

\
\ + ~ tan fn(l - I,n]
\

1Y

I

!
1
I f“ Cn

I 1 [with Cnfixecj

Fig. 2—Method of solution of the resonance equation.

to this process of graphical solution. It must be noted

that the terms on the right hand side of the equation

are periodic and that there will be a large number of pos-

sible solutions according to the branch on which the in-

tersection occurs. We shall discuss this point again

later, but for the moment we limit ourselves to the solu-

tion on the first branch of the curve, thus considering

only the case of ‘(quarterwave” operation for each of the

two component lines. This is the lowest or dominant

mode and is of major practical importance.

The solutions obtained for this fundamental mode

are given in Fig. 3(a), (b), (c), and (d) in the form of a

series of universal design curves. These (curves and the
normalized variables defined in (2), (3), (4) and (5) give

us the tools for designing these types of resonators in the

desired frequency range. The loci of the maxima are also

obtained by equating the derivative to zero and solving

the resulting equation.
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(a)
(c)

(b) (d)

Fig. 3—Universal design curves for various values of Z. and C..

An examination of these curves shows the following

properties:

1)

2)

3)

4)

5)

Good linearity is obtained except near the maxi-

mum of the curve.

For values of 2. other than unity, better linearity

and more gradual tuning can be obtained over a

greater range on one side of the curve than on the

other.

The tunable range is reduced while linearity im-

proves as value of Cn increases.

From symmetry considerations, it should be clear

that for Z. less than unity, the curves are lateral

inversions of the corresponding cases for their re-

ciprocals.

For Jln = O or 1 the cavity resembles a singly re-

entrant cavity of length L and characteristic im-

pedance Z02 or ZO1 respectively.

C. Higher Order Modes

We have thus far restricted ourselves to the discus-

sion of the simplest mode in the cavity, i.e., the trans-

mission line mode with nearly quarterwave variation in

each coaxial section. It would be worthwhile to study

the possibility of other modes to see whether they be-

have linearly and to assure that there is no likelihood of

interference between the useful mode and the higher

orders.

That higher order longitudinal modes are possible can

easily be seen from the periodic nature of the tangent

functions and from Fig. 2, where several intersections

are indicated. A physical picture can also be obtained

by noting that the resonance condition is determined by

the impedances looking into both lines at the plane of

the capacitive gap; the requisite impedances on either

side may be obtained by modes which are not necessarily

of the fundamental type. The number of possibilities

for satisfying the resonance condition is therefore in-

finite for each position of the capacitive gap. ,

For a proper understanding of such higher modes, a

solution for some typical values of parameters was ob-

tained for the mode which appears next after the dom-

inant, i.e., as given by the second intersection (shown in

Fig. 2). Fig. 4 shows a comparison of the normal tuning

curve with the tuning curve for this next solution when

Z.= 3 and C.= 0.05. It is noted that the new curve is far

from regular; also that, fortunately, considerable fre-

quency separation occurs, and there is no harmonic

relation between the modes. We are therefore fairly safe

in assuming good mode-separation properties.

Higher order modes of the circumferential type are
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Fig. 4—Comparison of the next higher mode with the dominant
for Z.= 3, and CW=O.05.

also possible as in all cylindrically symmetric structures.

However, if care is taken to keep the circumference of

the cavity sufficiently less than one wavelength in the

operating range, the cavity can be essentially free from

circumferential mode interference.

Two simple checks can be made to assure that any

given design is operating in the required fundamental

mode:

rD <<h for circumferential modes

2L<h for longitudinal modes

at the highest operating frequency.

RZ1 = ZoIaJI sec2 /?lll

X 2] = ZO1tan ~J1.

We assume that al is quite small so that terms with

CW211Zare neglected and tan CYlll= alll. This assumpticln is

justified for cavities with inner surfaces of high con-

ductivity materials.

The value of al is given by the usual skin effect

formula4; for a siIver plated cavity

()6.68 x 10-1”{’ ; + 1

al = —— .

D Ioge :

But since

D 2nfL
and j. = —— ~

’01 = 6010g’ z 110

hence

v’72 ():+-1

al = 2.774 X 10–4 —.——_ .
L ZOID

(6)

The resistive and reactive components of Zll become

III. CALCULATION OF Q Xl, = 201 tan fnlln

If we take into account the small losses occurring in and similar expressions hold for the right-side cc)axial
the cylindrical conducting walls, the equation of input line.
impedance of the left side line can be rewritten as The equivalent circuit of Fig. 1(b) can be modified to

Zll = RZ1+ jXt, = ZO1 tanh 7J1
include the resistive components as shown in Fig. 1(c).

An expression for the unloaded Q is then simply given

where by

‘Y1= @ +.N1, xl, + xl,
al= loss factor in nepers per meter (small), Q. =

PI= phase constant in radians per meter
&, + .Rz2

provided we neglect the losses at the shorting end and But ~ve note that

at the capacitive gap.
Zol

By standard algebraic methods, the real and the XZ, + XZ, = ZOI tanf.lk + 202 tanfn(l – 11.) = -v .

imaginary parts of the above equation can be separated
inc.

to give Hence

Z(II ()!? L1/2
dl

Q. = — ,,

2.774 X 10–4f.3/2C.
[(: )

+ 1 L sec2fnhn+
()
~ + 1 (1 – L) seczfn(l – lln)

1

4 W. Jackson, “High Frequency Transmission Lines, ” Methuen
and Co. Ltd., London, Eng., p. 50; 1951.
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IV. EXPERIMENTAL RESULTS

A. Cavity Design

In most cases, cavity design begins with a knowledge

of the desired tuning range around a given center fre-

quency. From the normalized curves in Fig. 3, one

curve with the appropriate linear tuning range and

slope is chosen; this determines the values of the para-

meters 2. and C%.The value of L is then determined by

applying (2) to the center frequency; knowing L, the
product ZOIC in (4) is fixed from the chosen value of C..

The value of C is generally determined by the bounds of

the design problem such as the required gap distance or

the capacity of the tube electrodes in case of oscillator

cavities; hence ZO1 gets defined. The rest of the design

requires only the determination of the diameters dl, dz,

and D for the appropriate characteristic impedances

keeping in mind that larger diameters give better Qo,

while a possibility of circumferential modes limits the

average circumference to less than the lowest wave-

length.

A cold test model of a cavity with a range of 1100 to

1900 mc was designed to test the principles outlined

above. The curves of 2%=3 were chosen due to their

reasonable linearity consistent with good tuning range.

The mechanical structure of the cavity is shown in

Fig. 5. The two center conductors are supported with

the requisite spacing by being clamped to an outside

frame which forms the base of the whole structure. The

outer cylinder is mounted concentric to these conduct-

ors and it slides over the center conductor assembly. Ac-

curate linear motion is imparted to the outer cylinder

by means of a micrometer head having threads with

one millimeter pitch; there are two hundred circumfer-

ential divisions, and motion adj usability of nearly 10-4

cm is thereby derived. An inherent backlash of about

0,00.5 cm exists; hence care is taken to make all adjust-

ments in one direction only. The important dimensions

of the cavity are L=4.967 cm, D=4. O cm, dl=3. O cm,
dz = 1.75 cm, and t is adjustable. The zero position on

the micrometer scale corresponds to the case when the

inner conductor dl is flush with the left wall of the cavity.

The feeding-in of the RF signal is in a completely

symmetric manner. A tiny probe protrudes through the

center of one of the inner conductors at the capacitive

gap and delivers the RF signal to the cavity from an or-

dinary flexible coaxial cable which is brought in along

the middle of the tube forming the center conductor dl.

B. Frequency Measurements

Measurements were first made on the cavity before

plating and installation of spring fingers in order to as-

sure that the cavity configuration was as close as pos-

sible to the theoretical design. As will be shown later,

these changes lead to a perturbation of the frequency.

For this experiment, the bearing surfaces were made to

the best possible sliding fit and properly aligned in all

respects to ensure a good contact. A standard methodb

was used for obtaining the curve of resonant frequency

vs cavity scale reading for two gap distances [0.42 cm

which corresponds to approximately l~~f ( C. = O. 1), and

0.21 cm which gives twice as much capacity (C. = 0.2)].

Fig. 6 shows the measurements (curves B) as well as

the calculations (curves A) of tuning characteristics for

these two gap spacings; it is noted that the measured

curves exhibit an appreciably linear behavior, perhaps

slightly better than the theoretical curves. For com-

parison, a tuning curve (curve D shown dotted) is also

computed for the usual type of singly re-entrant cavity

(i.e. the capacitance terminated coaxial line) in the same

general range; the improvement in linearity by back-to-

back tuning becomes quite apparent. By fitting the best
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Fig. 5—The experimental resonator.
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Fig. 6—Comparison of measured and calculated readings for gap
distances of 0.42 cm (CV=O. 1) and 0.21 cm ( Cfi=O.2). A gives
calculated values; B gives measured values without spring fingers;
C gives measured values with spring fingers and silver plating.

6 E. L. Glnzton, “Microwave Measurementsj” McGraw-Hill
Book Co., New York, N. Y., pp. 413-417; 1957.
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straight line through our measured values, it can be

checked that departure from linearity is much less than

1 per cent for the whole range. For the larger capacit-

ance value, the linearity appears to be further improved,

although the tuning range is much reduced.

It is noticed that the measured curves have shifted

upwards and leftwards from the calculated curves for

both values of gap distance. An inquiry into the pos-

sible reasons for this difference between theory and ex-

periment yields a better insight into short-comings of

the first order theory.

1)

2)

3)

A

and

A small systematic error is introduced due to the

finite thickness of the capacitive gap. In the ex-

periment, the micrometer scale is referenced from

the left wall of the cavity and, in any given posi-

tion, measures the distance from the wall to the

end plate of the larger central conductor. Where

the gap thickness is truly negligible this would not

cause an error, but for appreciable gap width (0.42

cm and 0.21 cm in our experiment) the distance 11

should be measured to the center line of the gap as

the appropriate reference; hence all measured

readings would be shifted to the right by half the

gap width.

Consider the RF field configuration near the gap

as sketched in Fig. 7. Our design did not take into

account the effects of the ‘(fringe” fields on the

capacity at the gap but merely assumed a lumped

capacitance of the ideal parallel-plate-type cal-

culated from the average area of the end surfaces

of the two center conductors. In practice, the “ef-

fective” capacitance under RF operation is differ-

ent and is determined by the field lines exchanged

between the two center conductors. Hence the

lines terminating on the outer cylinder indicate a

reduced effective capacitance. Resonance would

therefore be indicated at a slightly higher fre-

quency.

Due to the same fringing effect, the effective

lengths of the coaxial lines have changed. This is

shown by the distance marked A on Fig. 7 which

is the distance from the gap center to the surface

of revolution which separates the fields of the left-

hand coax from the fields of the righthand coax.

It is easily seen that the direction of the error is

such as to explain the differences between theory

and experiment.

little thought will show that the errors due to 2)

3) will be larger for larger values of Z. and for

narrower gaps, since the differences in diameters of the

two central conductors, as will a narrower gap, will

cause the actual capacitance value to differ considerably

from that calculated on the average area basis.

In preparation for a proper measurement of Qo,

spring-fingers were subsequently installed at the sliding

contacts and the RF surfaces were plated with a coat of

about 20 microns of silver. Frequency measurements

were repeated in order to assess the change caused. by

these additions; these measured curves are also shown

in Fig. 6 (marked C). It is clear that these changes have

caused a perturbation of nearly 100 mc in the frequency

due to the reduction in volume and the consequent

change in the resonant structure; however, linearity is

not at all impaired,

C. Measurement of Q

The first order formula for calculating the QO of this

cavity was derived in Section III. When applied to the

present design, a curve of Q. vs the tuning position can

be calculated; such a curve is shown in Fig. 8. It is of

interest to note the general trend of the curve which

indicates a similarity in general form to the slope of the

tuning curve. We see that QO is reasonably high in the

region of interest to us (namely the linear tuning region

on the left hand side) and that it shows a slight rise with

frequency; the rapid fall in the region beyond the linear

range is of little consequence since the cavity is not in-

tended for use in that region.
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Fig. 7—Probable configuration of electric field lines near the gap.

Fig. 8—Calculated QO of the resonant. system.
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Practical measurements of unloaded QOfor a gap dis-

tance of 0.42 cm were carried out using the impedance

method,6 and are shown in Table I together with the

corresponding calculated values.

TA13LE I

COMPARISONOFCALCULATEDAND MEASUREDVALUESOF QO

Measured fre-
quency in mega-
cycles per second

1500
1600
1800
1870
1690

Tuning
Measured

Corresponding
position

Qo
theoretical

in centimeters Q,

0.85 1125 47’00
1.55 1280 4950
1.8 1720 5100
2..50 900 4400
3.49 575 2100

As can be expected, the measured values of the un-

loaded QOare about 25 per cent of the theoretical values.

This difference is a usual one in case of QOmeasurements

and is due to losses which are not accountable by the

simple theory. Losses at the shorting end, imperfect

spring contacts, unpolished surfaces, dirt, scratches,

capacitance losses at the gap, no losses etc., account for

this difference.

V. CONCLUSION

The first-order theory of back-to-back tuning has

been derived and shown to agree reasonably well with

the experimental results. Both theory and experiment

show that the resonator tuning characteristic obtainable

by this method is linear for all practical purposes over a

large frequency range. By appropriate design, various

frequency ranges and tuning slopes can be obtained.

The theoretically expected values of unloaded QOare in

the vicinity of 4500, while in actual practice values

around 1200 are obtained in the useful range of linear

tuning.

The method is, in general, applicable to any form of

resonant system where quarter-wave line sections can

be employed. For instance, for frequencies in the VHF

range, the method can be applied with Lecher lines; in

the UHF range, coaxial-type lines are more convenient.

The presence of a capacitive gap makes the system

especially adaptable where interaction with an electron

beam is intended. Due to the simple construction, con-

venient size, nonharmonic modes, and good mode sepa-

ration, this method should hold promise of valuable ap-

plication over a wide frequency spectrum.
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Equivalent Circuits for Small

Longitudinal Apertures and

Symmetrical

Obstacles*
ARTHUR A. OLINER~

Sunmary—Formdas based on small aperture and small obstacle
theory are presented for the determination of equivalent circuits for
symmetrical longitudinal apertures and obstacles. These formulas
are then applied to several examples of practical interest, including
aperture dlscontinuities in trough wavegnide and an obstacle array
of interest to anisotropic radomes.

I. INTRODUCTION

T

HE evaluation of equivalent circuits for wave-

guide discontinuities often involves the solution of

“ a boundary value problem of considerable com-

plexity. For the class of so-called ‘{small” apertures and

obstacles, however, this evaluation becomes particu-

* Manuscript received by the PGMTT, August 28, 1959. The
major portion of this work was performed at the Microwave Research
Institute of the Polytechnic Institute of Brooklyn under Contract
No. AF-19(604)-2031, sponsored by the Air Force Cambridge Re-
search Center.

~ Microwave Research Institute, Polytechnic Institute of Brook-
lyn, Brooklyn, N. Y.

Iarly simple when the problem is properly phrased. A

small aperture or obstacle is one which is located far

from the guide walls and whose dimensions are small

compared to a wavelength. Under these conditions, the

distortion of the field lines in the vicinity of such a small

aperture or obstacle, due to some specified excitation,

is essentially independent of the cross-sectional shape

of the containing waveguide, and depends only on the

nature of the excitation and the physical shape of the

aperture or obstacle. The quantity which characterizes

the aperture or obstacle and which is a function ordy of

its physical geometry and the type of incident excitation

is the polarizability; since the aperture or obstacle is

small compared to wavelength, the polarizability may

be determined under static conditions. The function of

small aperture or obstacle theory is then to relate the

polarizability to the location of the aperture or obstacle

within the containing waveguide and to the appropriate


